M. Tech. in Computer Science & Engineering (CSE)
M.Tech. (Computer Science & Engineering) Curriculum & Syllabus

1st Year 1st Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATH5101</td>
<td>Advanced Discrete Mathematics</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5102</td>
<td>Algorithms and Complexity</td>
<td>4 1 0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CSEN5103</td>
<td>Advanced Database Management Systems</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CSEN5104</td>
<td>Advanced Programming and Problem Solving</td>
<td>3 1 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CSEN5105</td>
<td>Advanced Computer Architecture</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total of Theory: 18 3 0 21 20

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN5113</td>
<td>Database Management Systems Laboratory</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5114</td>
<td>Advanced Programming and Problem Solving Laboratory</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CSEN5197</td>
<td>Seminar I</td>
<td>0 0 2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 18 3 8 29 25

TOTAL OF SEMESTER:

18 3 8 29 25

1st Year 2nd Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN5201</td>
<td>Theory of Computation</td>
<td>4 1 0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5202</td>
<td>Advanced Operating Systems</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CSEN5203</td>
<td>Advanced Computer Networks</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CSEN5221- CSEN5228</td>
<td>Elective I</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CSEN5231- CSEN5237</td>
<td>Elective II</td>
<td>4 0 0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total of Theory: 20 1 0 21 20

Practical / Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>Contacts periods Per weeks</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN5212</td>
<td>Operating Systems Laboratory</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CSEN5213</td>
<td>Computer Networks Laboratory</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CSEN5214</td>
<td>Term Paper Leading to Thesis</td>
<td>0 0 0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Total of Practical / Sessional: 0 0 6 6 5

TOTAL OF SEMESTER:

20 1 06 27 25
2nd Year - 3rd Semester

Theory:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN6101</td>
<td>Software Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSEN6141 - CSEN6149</td>
<td>Elective III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSEN6151 - CSEN6159</td>
<td>Elective IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total of Theory</td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Contact Hrs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN6195</td>
<td>Thesis(Progress) and Seminar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total of Sessional</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>TOTAL OF SEMESTER:</td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

2nd Year - 4th Semester

Sessional:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>CODE</th>
<th>Paper</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSEN6295</td>
<td>Thesis(Final)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>CSEN6296</td>
<td>Thesis Viva-voce</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CSEN6297</td>
<td>Grand - Viva</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total of Sessional</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOTAL OF SEMESTER:</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
Detailed Syllabus:

Mathematical Foundations: (10L)
Set Cardinality: Countable and Uncountable Sets; Relations: Partial & Total Orderings, Hasse Diagrams, Partially Ordered Sets (POSETs), Minimal, Maximal, Greatest, Least Elements; Properties of Lattices, Distributive and Complemented Lattices, Boolean Algebras.

Properties of Integers (10L)
Well Ordering Principle, Weak & Strong Principles of Mathematical Induction, Fundamental Theorem of Arithmetic, Euclidean Algorithm, Properties of GCD, Linear Congruences, Residue Classes; Fermat’s little Theorem, Euler’s Phi Function, Euler’s Theorem on Congruences & Related Results, Chinese Remainder Theorem.

Topics in Combinatorial Mathematics: (10L)
Pigeon Hole Principle, Permutations & Combinations, Binomial Coefficients, Recurrence Relations & Generating Functions, Properties of Fibonacci Numbers, Principle of Inclusion & Exclusion, Polya’s Theory of Counting, Ramsey’s Theorem.

Advanced Graph Theory: (10L)
Tree, Binary Tree, Spanning Tree, Walk, Path, Cycle, Hamiltonian Graph, The Travelling Salesman Problem, Euler Graph, The Chinese Postman Problem, Planar Graph, Euler’s Formula for Planar Graph and Related Problems, Examples of Non-Planar Graphs, Kuratowski’s Theorem, Matching and Augmenting Paths, Hall’s Marriage Theorem and Related Problems, Vertex Colouring, Chromatic Polynomials.

References:
[2] Introduction to Graph Theory (2nd Ed), D G West, Prentice-Hall of India, 2006
Basic Concepts: Review of basic data structures and algorithms, worst-case and average-case analyses, direct computation of running time of insertion sort, asymptotic complexity, Big-O, Big-Theta, Big-Omega and small-o notations and their properties.

Amortized Analysis: Aggregate, Accounting and Potential Method

Sorting and Selection: Sorting by mergesort, quicksort, heapsort and other methods, priority queues, lower bounds for comparison-based sorting, median and order statistics, selection of k^{th} largest element.

Searching and Binary Trees: Binary search in static tables, insertion and deletion in binary search trees, total path length of binary trees, weighted binary search trees, AVL trees and other balanced trees, randomly built binary search trees.

Graph Algorithms: Graph traversal: BFS and DFS, topological sorting of cycle-free graphs, connected and bi-connected components, shortest path algorithms, minimum spanning trees.

Algebraic Operations: Integer multiplication, GCD, polynomial evaluation, Strassen’s matrix multiplication algorithm, introduction to FFT, simple lower bounds results.

String Processing: String searching and pattern matching, KMP algorithm.

NP-completeness: Informal concepts of deterministic and non-deterministic algorithms, P and NP, NP-completeness, Cook’s theorem, examples of NP-complete problems, approximation algorithms.

References:
Distributed Databases- Storage structures for distributed data, data fragmentation, Transparency of distributed architecture, Distributed query processing, and Transaction management in distributed environment, Recovery and Concurrency control, locking protocols, Deadlock handling.

Object-oriented Databases- Objects and Types, Specifying the behavior of objects, Implementing Relationships, Inheritance.
Parallel Databases- architecture, query processing, join algorithms, performance.
Statistical database- architecture, query processing, join algorithms, performance.
Statistical database- Elementary operations, security in statistical database, linear queries, limits on the structure of queries.
Temporal Databases- language issues, storage and transaction management

Text Books:
1. Silberschatz Korth, Sudarshan: Database System Concepts, TMH
2. Ramakrishnan, Gehrke: Database Management Systems, TMH
3. Connolly and Begg: Database Systems: A practical approach to design, implementation and management, Pearson

Reference Books:
3. Date: An Introduction to Database Systems, Pearson
Basic Data Structures
Arrays, Lists, Circular Lists, Doubly Linked Lists Stacks, Queues, Heaps, Array and linked implementations of heaps

Data Structures for Searching
Binary Search Trees, Red-Black Trees, AVL Trees, Tries, Skip Lists

Hash Tables
Hash functions, hash tables. Collision resolution by chaining, Open addressing, Linear probing, Quadratic probing, double hashing.

Advanced Data Structures
B Trees, Binomial Heaps, Fibonacci Heaps, Quad Trees

Recursion and Recursion Removal
Recursive and non-recursive implementations of Towers of Hanoi, Inorder, Preorder and Postorder Traversals

Graph Search
DFS using stacks, BFS using queues Shortest path algorithm using Heaps and Fibonacci Heaps

Object Oriented Programming
Objects, Classes, Inheritance, Polymorphism. Review of C++ and Java.

References:
1. Kruse on Data Structures
2. Pratt on Programming Languages
Pipelined Architecture - Brief Introduction, Performance Measures - speed up, efficiency, performance - cost ratio etc.

Static pipelines - reservation tables, scheduling of static pipelines, definitions - minimum average latency, minimum achievable latency, greedy strategy etc., Theoretical results on latency bounds with proof, Hardware intra-pipeline controller and scheduler, Theoretical results on Reservation Table optimization to support given latency cycle.

Dynamic pipelines - reservation tables, optimal scheduling strategy, Theoretical results on scheduling and reservation table optimization, hardware scheduler/controller design.

Vector Processing - use of pipelines, detailed case study.
Instruction pipelines, performance measures.

SIMD Architectures - brief introduction, various concepts illustrated by studying detailed SIMD algorithms, viz., Matrix multiplication, Sorting on Linear array, Mesh and Hypercube.
Detailed study of Interconnection Network - Boolean cube, Mesh, Shuffle-exchange, Banyan, Omega, Butterfly, Generalized Hypercube, Delta etc. - illustration of use in actual SIMD algorithms.

Array Processors - simple case study.

MIMD Architectures - brief introduction, Classification LCS, TCS, Memory access contention - reasons, Cache coherence problem - Solution and implementation, MIMD algorithms & implementation, viz., Matrix multiplication & Searching.
Systolic Architecture - introduction, Kung's method - illustration by an actual algorithm example, possible implementation using Transputers.

Dataflow Architectures – study and Classification, implementation (Dennis & Arvind), case study with actual algorithms, extension of architecture to accommodate non-primitive data types.

Text Books:
4. Quinn: Designing Efficient Algorithms for Parallel Computers, MH.

Reference Books:
2. K.Hwang & D. Degront: Parallel processing for Super Computers & Artificial Intelligence, MH.
Finite State Machines: Definition, concept of sequential circuits, state table and state assignments.

Finite State Models: Basic definition, mathematical representation, Moore vs. Mealy machines, capabilities and limitations of FSM.

Finite Automata: Deterministic Finite Automata. Extending Transition Function to strings. The language of a DFA.

Turing machines: Extensions to the basic Turing Mahine. Restricted Turing Machines. Undecidability. Languages that are not recursively enumerable. Undecidable Problems. Post’s Correspondence Problem.

References:
1. Introduction to Automata Theory, Languages and Computation.
 by Hopcroft, Motwani and Ullman.
2. Switching and Finite Automata Theory by Zvi Kohavi and Niraj Jha.
Subject Name: ADVANCED OPERATING SYSTEMS

Paper Code: CSEN5202

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Distributed Operating Systems: Inherent Limitations of a distributed system, Chandy-Lamport’s Global State Recoding System, Distributed Mutual Exclusion, Lamport’s, Ricart-Agrawala, and Mackawa algorithms, Suzuki-Kasami’s Broadcast, and Singhal’s Heuristics algorithms.

Distributed Deadlock Detection: The system model, Resource vs Communication Deadlocks, Wait-for Graphs, Deadlock Handling Strategies in Distributed systems, Issues in Deadlock detection & Resolution, Control organizations for distributed deadlocks, Ho-Ramamoorthy’s Centralized deadlock detection algorithm, Distributed deadlock detection algorithms, Obermark’s, Chandy-Sinha-Natarajan, Chandy-Misra-Haas algorithms.

Distributed File System: Architecture, Mounting, Caching, Naming and Name Resolution, Name Server, Cache Consistency, SUN Network File System, Stateful and Stateless Server, the SPRITE File System, the X-Kernel Logical File System

Distributed Shared Memory: Central server, Migration, Multiple Read-Single Write, Multiple Read-Multiple Write, Memory Coherence and Consistency, Coherence Protocols, Design Issues, Case Studies (IVY)

Distributed Scheduling: Queuing Theory, Load Distributing, Load Balancing, Load Sharing, Preemptive vs Non-Preemptive transfers

Multiprocessor Operating Systems: Difference between Multiprocessing and Distributed environments, Tightly coupled vs Loosely Coupled systems, UMA, NUMA, NORMA architectures, Interconnection networks for multiprocessor systems, BUS, Crossbar Switch, Multistage, Hypercube architectures, the separate supervisor, master slave, symmetric configuration, Threads, User-level and Kernel Level threads, Case Studies (MACH OS, MACH Kernel).

Example Distributed Operating Systems: Major design decisions in typical systems such as Mach, Chorus, Amoeba and the OSF Distributed Computing Environment.

Real Time Operating System: Definition, types of RTOS, A reference model of Real Time System, Commonly used approaches to Real Time Scheduling.
References:
- Operating Systems Concepts & design - Milan Milenkovic, TMH
- Advanced Concepts in operating Systems - Mukesh Singhal and Niranjan G. Shivaratri, TMH
- Real-Time Systems-Jane W. S. Liu, Pearson Education

Subject Name: ADVANCED COMPUTER NETWORKS

Paper Code: CSEN5203

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module I: Data Communication Fundamentals: (10L)
A) Transmission Media and its properties; (1L)
B) Modulation & demodulation – Modems; (1L)
C) Error detection & correction ; CRC codes; (1L)
D) Concept of Computer Networks: Two-level hierarchy – Hosts & subnet; Protocols & Standards: Reference Model; OSI seven layer reference model; TCP/IP reference model; (2L)
E) Physical Layer: Multiplexing; Switching; Data transmission over Telephone Line – PCM/T1 etc; High Speed Modem concepts (DSL / Cable Modems); Spread Spectrum / CDMA based communication; (2L)
F) Queuing Models: M/M/1 & M/G/1 Queuing system – average queue length, delay and waiting times. (3L)

Module II: Computer Networking (12L)
A) Data Link Layer: Framing / Stuffing; Flow Control Protocols: Stop-and-Wait / Go-Back-N / Selective Repeat; (2L)
B) Networking Layer:
 i) Internetworking & devices: Transparent Bridges / Source-Route Bridges / Ethernet Switches ; Backward Learning Algo; Construction of Spanning Trees; (2L)
 ii) Routing protocols: Desired attributes; Centralized routing; Distributed routing : Distance vector / Link state algo; (2L)
C) MAC sub-layer:
 i) Ethernet (IEEE 802.3) : Pure ALOHA / Slotted ALOHA / CSMA-CD / Ethernet protocol; Hub based architecture; Frame format; Collision Resolution; (2L)
ii) **Token Ring** (IEEE 802.5): Ring architecture; Role of Token; Frame format for various types of Frames; Delay calculations;

D) **Transport Layer:**
Process to process delivery / multiplexing;
Congestion control algo: Leaky bucket / Token bucket;

E) **Application Layer:**
Cryptography & Network security elements; Firewalls;

Module III: Internetworking:

A) **Network Layer protocols:**
IP: Packet format; Classful addressing / subnetting / subnet mask; CIDR / supernetting / masks; Forwarding algorithms;
Address scarcity problem & solution;
IPv6: addressing / packet format / differences with IP (v4);
ARP/RARP/DHCP: MAC and IP address conversion;
ProxyARP
Routing: RIP / OSPF / BGP

B) **Transport Layer protocols:**
TCP: Flow control mechanism; UDP; Difference between UDP and TCP;

C) **Application Layer:**
DNS / WWW / E-Mail / FTP; Telnet details; Security in the Internet; Secured Telnet using SSL / TLS;

Module IV: Recent Topics:

A) ISDN, Frame Relay & ATM
B) Wireless Technologies: Cellular Telephony / Wi-Fi (IEEE 802.11amily) / BlueTooth ; WSN;
C) **Mobile IP & TCP protocols; Ad Hoc Routing:**
D) High Speed Packet Processing in the Internet: High speed router architecture; High Speed IP packet processing; High Speed Routing algorithms and its architecture implications;
Real Time Protocol; (Basic ideas only)
E) Multimedia networking protocols:

Text Books:
2. Peterson & Davie: Computer Networks (check)

Reference Books:
4. William Stallings: ISDN and Broadband ISDN with Frame Relay and ATM
1. SEMESTER II ELECTIVE I (CSEN 5221 to CSEN 5228)

CSEN 5221 Graph algorithms
CSEN 5222 Web Intelligence and Algorithms
CSEN 5223 Advanced Soft Computing
CSEN 5224 Mobile Computing
CSEN 5225 Computational Biology
CSEN 5226 Operations Research and Optimization Techniques
CSEN 5227 Probability & Statistics
CSEN 5228 Algorithms for VLSI CAD

Subject Name: GRAPH ALGORITHMS

Paper Code: CSEN5221

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Introduction: Graphs, Subgraphs, Degree Sequences, Connectivity, Cut-Vertices and Bridges, Digraphs.

Trees, Minimum Spanning Trees.

Depth First Search. DFS for undirected graphs, non-separable components and directed graphs.

Hamiltonian Graphs and the Travelling Salesman Problem.

Matchings and Factorizations. Maximum Matchings in Bipartite and General Graphs. Graph Factorizations.

Graph Colorings. Vertex Colorings. Chromatic Polynomials. Edge Colorings. The Four Colour Theorem.
References:

| Subject Name: WEB INTELLIGENCE AND ALGORITHMS |
|---|---|---|---|---|
| Paper Code: CSEN5222 |

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Introduction: Historical Perspective, Evolution of Web 2.0.
Intelligent Web Applications: Examples.
Learning from user interactions. Rating and voting, emailing and link forwarding, bookmarking, purchasing items, reviews.
Extracting intelligence from content: Blogs, Wikis, Message boards.
Clustering and web intelligence. Overview of clustering algorithms.

Collaborative Filtering. Data mining and Association Rule
Mining techniques in recommender systems. Information retrieval and hybrid techniques. Recommender systems in e-Commerce.
Web 3.0 and the semantic web: Concepts, components, solutions.
Text Books:
2. Collective Intelligence in Action.

Reference Books:

Subject Name: ADVANCED SOFT COMPUTING

Paper Code: CSEN5223

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuzzy Logic:
Conventional and fuzzy sets, fuzzy relations, fuzzy operators, realisation of fuzzy systems using fuzzy relations, application of fuzzy logic in vision, pattern recognition, robotics and linguistics.

Neuro-computing: Models of Neuro-computing: (a) Perceptron Training, (b) Back propagation learning, (c) Hopfield nets, (d) Adaptive resonance theory I & II, (e) Self-organising feature map, (f) ADALINE. Applications in pattern classification and image understanding.

Genetic Algorithms:
The basic operators, Schema theorem, convergence analysis, stochastic models, applications in search and optimization.

Learning with GA & NN:
Composite use of fuzzy logic, neural network and genetic algorithms.
Chaotic Theory, Fusion of neuro, Fuzzy, GA & Chaos theory & applications.

References:
Subject Name: MOBILE COMPUTING

Paper Code: CSEN5224

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module 1[4L]: Introduction to Cellular Networks, Personal Communications Services (PCS). Generations of Mobile Networks- 1G, 2G, 3G, 4G (Introduction only)

Module 2[4L]: Global System for Mobile Communication (GSM) system overview: GSM Architecture, Mobility management, Network signaling.

Module 4[4L]: Introduction to International Mobile Telecommunications 2000 (IMT 2000) vision, Wideband Code Division Multiple Access (W-CDMA) and CDMA 2000

Module 5[8L]: WLANs (Wireless LANs) IEEE 802.11 standard, PCF, DCF, WiMAX, Bluetooth, Zigbee.

Module 6[4L]: AD-HOC NETWORKS: INTRODUCTION, ROUTING CHALLENGES FOR AD-HOC NETWORKS, ROUTING PROTOCOLS (AODV, DSDV, DSR,).

Module 7[4L]: WIRELESS INTERNET: MIPV4, MIPV6

Mobile 8[2L]: TCP for Mobile Networks

Module 9[2L]: Wireless Application Protocol (WAP): The Mobile Internet standard, WAP Gateway and Protocols, wireless mark up Languages (WML).

Text Books:

1. COMPUTER NETWORKS : A.S.TANNENBAUM (4th/5th Ed)
2. Wireless Communications & Networks: Stallings
3. Mobile AdHoc Networking: Dharma P Agrawal et al
5. Mobile Communications: Schiller
Subject Name: COMPUTATIONAL BIOLOGY

Paper Code: CSEN5225

Contact Hours per week	L	T	P	Total	Credit Points
4 | 0 | 0 | 4 | 4 |

Genes, Molecule codes, DNA Structure. DNA and Proteins.
Analyzing DNA: copying, cutting and pasting, measuring, probing.

Dynamic Programming Algorithms: DNA Sequence Comparison, Edit Distance and Assignments, Longest Common Subsequence, Global Sequence Alignment, Scoring alignments, Local Sequence Alignment, Alignment with Gap Penalties, Multiple Penalties, Gene Prediction, Spliced Alignment.

Divide and Conquer Algorithms. Sorting, Sequence Alignment, Four-Russians Speedup, Constructing alignments in sub-quadratic time.

Graph Algorithms: DNA Sequencing, Shortest Superstring Problem, DNA arrays as an alternative sequencing technique.
Sequencing by Hybridization: Hamiltonian and Eulerian Path Problems. Protein sequencing and identification.

Combinatorial Pattern Matching. Repeat Finding, Exact pattern matching, Keyword trees. Suffix trees.
Heuritic similarity search, Approximate pattern matching.
Sequenced databases and querying: FASTA, BLAST.

Clustering and trees. Gene Expression Analysis, Hierarchical Clustering, Evolutionary trees. Distance based tree reconstruction. Reconstructing trees from additive matrices.
Evolutionary trees and hierarchical clustering. Character based tree reconstruction. Small and Large Parsimony problem.
References:

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Subject Name: OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES

Paper Code: CSEN5226

Advanced Linear Programming:
The Revised Simplex Algorithm, Complexity of the Simplex Algorithm, Bounded Variable Technique, Decomposition Principle, Karmarkar Interior Point Algorithm

Sensitivity Analysis:
Introduction, Change in the Cost Vector, Changes in the Right – Hand Side Vector, Change in the Constraint Matrix, Special Cases, Parametric Programming

Project Management:
Introduction, Critical Path Method, Critical Path Determination, Optimal Scheduling by CPM, Project Evaluation & Review Technique

Sequencing Problems:
Introduction, Problem of n – Jobs & 2 Machines, Problem of n – Jobs & m – Machines, 2 – Jobs on Ordered m – Machines

Integer Programming:
Introduction, Branch & Bound Algorithm, Traveling Salesman Problem, Cargo Loading Problem.

Dynamical Programming:
Introduction, Formulation, Recursive Relations, Continuous Cases, Discrete Cases, Forward Recursions, Linear Programming vs Dynamic Programming.

Non – Linear Programming:
Introduction, Lagrange Multipliers Method, Convex Non- Linear Programming Problem, Kuhn – Tucker Theory, Quadratic Programming, Separable Programming, Duality in Non – Linear Programming

Search Techniques:
Unimodal Function, Dichotomous Search Method, Fibonacci Search Method, Golden Section Method, Steepest Descent Method, Conjugate Gradient Method

Geometric Programming:
Introduction, Unconstrained Posynomial Optimization, Constrained Posynomial Optimization,

Goal Programming:
Introduction, Standard Form of LGPP, Partitioning Algorithm, Grouping Algorithm
Random Number & Simulation:

(a) Random Number
Introduction, Random Number Generations – Methods, Generation of Pseudo Random Numbers
[a) Mid - Square Method, b) Congruential Method], Problems

(b) Simulation
Introduction, Advantages and Limitations of Simulations Techniques, Monte Carlo Simulation, Application

References:
3. Hiller Liberman: An Introduction to Operation Research, TMH
5. S. Bhaskar: Operations Research, Anuradha Agencies
6. K. Kannan: Operarions Research, Anuradha Agencies
7. V. K. Kapoor: Operarions Research, Anuradha Agencies

Subject Name: PROBABILITY & STATISTICS

<table>
<thead>
<tr>
<th>Paper Code: CSEN5227</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Probability: Classical definition; problem solving by elementary combinatorial methods; set theoretic definition of probability for discrete sample spaces; basic probability theorems (union of events/Boole’s inequality, etc.); independence of events, conditional probability, Bayes’ theorem; discrete probability distributions (binomial/ Poisson/ hypergeometric/ negative binomial); continuous probability distributions (exponential/ uniform/ normal); moments and moment generating function; basic limit theorems (Chebyshev’s inequality/ weak law of large numbers/ normal approximation to binomial/ central limit theorem in 2D case); joint distribution of two random variables (with more emphasis on the discrete case); conditional expectation and variance; Markov chains: examples, properties and basic results.

Statistics: Correlation and regression; simple random sampling with and without replacement, expectation and standard error of the sample mean and the sample proportion; maximum likelihood estimation; introduction to confidence intervals; concept of testing of hypothesis, notion of Type I and Type II errors, tests for mean and variance in one and two-sample cases, tests related to regression problems, test for population proportion.
Introduction: Introduction to CAD flow.

Logic Synthesis: 2-Level Forms, logic minimization. Exact and heuristic approaches. Branch and Bound solution. Logic Synthesis: Multi-Level Forms. Transformations for logic networks, elimination, extraction, decomposition, simplication, substitution. Algorithmic approach to multi-level logic optimization. SIS operations, algebraic model,

Sequential Logic Optimization, State Minimization, State Encoding, Retiming. Technology Mapping, Algorithms for library binding. Covering algorithms and structural matching

Floorplanning: Constraint-based, Integer Programming based, Rectangular dualization, Hierarchical methods, Timing driven floorplanning.

Routing: Global Routing. Maze Routing algorithms, Line-Probe algorithms, Shortest path based algorithms, Steiner tree based algorithms, Integer programming formulations.

Left-edge based algorithms, Constraint graph based algorithms, Greedy channel router. Hierarchical channel router. Multi layer algorithms. Switchbox routing algorithms.

Compaction: One-dimensional compaction. Constraint graph based compaction. Virtual grid based compaction. Two dimensional compaction. Simulated annealing, hierarchical and performance-driven approaches.

Layout Analysis and Verification. Design Rule Checking, Connectivity extraction, Device and parameter extraction, Layout versus Schematic.

Advanced Topics: Parallel CAD, Hardware Acceleration, Power Optimization.

References:

2. **SEMESTER II ELECTIVE II (CSEN 5231 to CSEN 5237)**

 CSEN 5231 Embedded Systems
 CSEN 5232 Parallel and Distributed Computing
 CSEN 5233 Computational Geometry
 CSEN 5234 Cryptography & Network Security
 CSEN 5235 Artificial Intelligence
 CSEN 5236 Pattern Recognition & Machine Learning
 CSEN 5237 Data Mining & Knowledge Discovery
Software:
Introduction to Embedded System, definition of embedded systems, examples of embedded systems, Microprocessors & assembly language programming.
Embedded software programming issues, Memory management, Overview of programming practices in DSP environment.
Interrupts, Interrupts basics, Shared data problem, Latency.
Software architectures for embedded environment, Round-robin, Function-queue scheduling, RTOS.
Introduction to RTOS, Tasks & States, Shared data & semaphores.
Other OS services, Message queue, mailboxes, pipes, Timer and events, Interrupts in RTOS Environment.
Overview of Design using a RTOS, Encapsulation of semaphores and queues, Hard Real time scheduling issues, saving memory and power.
Overview of a commercial RTOS for handheld devices, Windows CE.

Hardware:
Input/output devices, Connectivity and data Transfer modes. Memory-mapped and I/O Mapped input output, Interrupt and DMA fundamentals.
Interrupt processing necessities with a typical device (controller). Device controller registers, Interrupt enabling and disabling, Interrupt identification, Device Driver Initialization, Main ISR, Deferred Interrupt processing.
Display device-working concepts, Principle of CRT VDU, Bit-mapped graphics, Information exchange between graphics kernel and display controller.

Text Books:
1. Nimal Nissanke: Real time System, PHI.
2. Iyer & Gupta: Embedded realtime systems programming, TMH

Reference Books:
Parallel Computing

Introduction: Parallelism in uniprocessor system, memory-interleaving, pipelining and vector processing, parallel computer structures, architectural classifications,

Parallel computer models: PRAM models, program properties: conditions of parallelism, program partitioning and scheduling, granularity and scalability.

System interconnect architectures: Static interconnection networks array, tree, mesh, hypercube, cube-connected-cycles, butterfly, Cayley graphs; Dynamic interconnection networks crossbar, Clos network, multistage interconnection networks, blocking, non-blocking and rearrangeable operations, properties and routing.

Parallel algorithms and their mapping on different architectures: Algorithmic computations (addition, multiplication, FFT, DFT, polynomial multiplication, convolution, evaluation and interpolation) -- Matrix operations (Transpose, multiplication, and inversion) -- Numerical Applications (solving systems of linear equations and finding roots of non-linear equations) -- Graph algorithms (All pairs shortest paths problem, finding connected components of a graph) – Sorting (Batcher, odd-even and Bitonic sort, sorting on mesh and mesh like architectures)

Networked computers as a multi-computer platform: Basics of message passing, computing using workstation clusters, software tools, Message Passing Interface MPI, CUDA and General Purpose GPU (GPGPU) programming.

Distributed Computing

Introduction: Why distributed computing, Parallel vs. distributed computing

Models of distributed systems: Synchronous vs asynchronous systems, interprocess communication models (shared memory and message-passing models, agent-based models), complexity measures

Program correctness: Safety and liveness properties, atomicity, non-determinism, fairness

Time and Clocks: Causality and concurrency, physical, logical and vector clocks, clock synchronization

Distributed Mutual Exclusion: Lamport’s algorithm, Ricart-Agrawala’s algorithm, Suzuki-Kasami’s token-passing algorithm

Distributed Snapshot and Global States: Consistent snapshots, Chandy-Lamport’s distributed snapshot algorithm, Termination detection: Dijkstra-Scholten’s algorithm, Distributed deadlock detection

Distributed Algorithms for Graphs: Routing algorithms (Shortest path, distance-vector, and link-state algorithms), spanning tree and minimum spanning tree, graph coloring algorithms

Faults and Fault-tolerance: Classifications of faults and fault-tolerance, triple modular redundancy, sliding window protocols, how TCP works

Distributed Consensus: The Byzantine Generals problem, fault-tolerant state machines

Replicated data management: Data consistency models: linearizability, sequential consistency, causal consistency, eventual consistency

Selected topics from Applications: Peer-to-Peer (P2P) networks, Sensor Networks, Cloud computing.
References:
[7] Peter Pacheco: Parallel Programming with MPI.

Subject Name: COMPUTATIONAL GEOMETRY

Paper Code: CSEN5233

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Line Segment Intersection, Plane Sweep, Intersections amongst orthogonal segments, Bentle-Ottman algorithm, red-blue segment intersections.

Module 1: Concepts and Techniques (8L)

Plain text and Cipher text, Different type of ciphers – Shift/Substitution, Transposition techniques and performing cryptanalysis on such ciphers.

Module 2: Asymmetric Key Cryptography (8L)

Block and stream ciphers and their modes of operation. DES (How confusion and diffusion is used, E-Box, P-Box, S-Box, Round key generation and MITM attack) and IDEA.

Module 3: Symmetric Key Cryptography (12L)

Extended Euclidean Algorithm, Congruence, Fermat’s Little Theorem, Chinese Remainder Theorem, Euler’s Theorem. RSA algorithm, Diffie-Hellman key-exchange, El-Gamal Cryptosystem, Advanced topics in cryptography - Elliptic curve cryptography, Quantum cryptography.

Module 4: Authentication Protocols (9L)

Authentication techniques based on Shared Secret Key, Key Distribution Centre, Kerberos, Public Key Encryption and Public Key certificates. Digital Signatures- Secret Key Signatures. Public Key Signatures and DSS. Message Digests - Basic concepts, MD5 and SHA Functions.

Module 5: Email and Internet Security (8L)

SSL, E-mail security – PEM, PGP, IPSec, Firewalls.

References:
Introduction [2L]
Definition of AI, Intelligent Behavior, Turing Test, Typical AI Problems, Various AI Approaches, Limits of AI

Introduction to Intelligent Agents [2L]
Agents & environment, Agent Architecture, Agent Performance, Rational Agent, Nature of Environment, Simple Reflex Agent, Goal Based Agent, Utility Based Agent

Problem Solving using Single Agent Search [2L]
Introduction to State-space search, state-space search notation, search problem, Formulation of some classical AI problems as a state space search problem, Explicit Vs. Implicit State space

Uninformed Search Techniques [5L]
Basic Principles, Evaluating parameters, BFS, DFS, Depth Limited Search, Iterative Deepening DFS, Uniform Cost Search & Bidirectional Search, Properties of various search methods & their comparative studies.

Informed Search Methods [6L]
Basic Principles, Heuristics, Best First Search – Greedy Best First, A* Search, their Properties, Admissible & Consistent heuristic, Local Search Techniques – Hill climbing & Simulated Annealing, Comparison with other methods

Problem Solving using Two Agent Search [2L]
Adversarial Search – Game Tree, MINIMAX Algorithm, Alpha-Beta Pruning, Performance Analysis

Constraint Satisfaction Problem [2L]
Definition of CSP, Representation of CSP, Formulation of Various popular problems as CSP, Solution methods of CSP – Backtracking & Forward Checking

Knowledge Representation & Propositional Logic [2L]

Knowledge Representation & Predicate Logic [5L]
Syntax & Semantics of FOPL, Representation of facts using FOPL, Clauses, Resolution, Unification methods of inference, Default & Non-Monotonic reasoning

Knowledge Representation using Rules [3L]
Rule based system, Horn clauses, Procedural vs. declarative knowledge, forward & backward reasoning, Introduction of logic programming using PROLOG/ LISP
Other Representational Formalism [2L]
Inheritable knowledge, Semantic network, Inference in Semantic network, Extending Semantic Network, Frames, Slots as objects

Probabilistic reasoning [5L]
Representing knowledge in an uncertain domain, probabilistic inference rules, Bayesian networks – representation & syntax, semantics of Bayesian net, Dempster-Shafer theory, Fuzzy sets & fuzzy logic

Planning [2L]
Introduction, Simple planning agent, Problem solving vs. planning, Logic based planning, Goal Stack planning, Planning as a search, Total-order vs. partial order planning

Learning [4L]
Overview, Taxonomy of learning system, various learning models, learning rules, inductive learning framework, Decision tree based learning, Learning using Neural Network & Genetic Algorithm

Natural Language Processing [2L]
Introduction, Syntactic processing, semantic analysis, discourse & pragmatic processing

Expert Systems [2L]
Representing and using domain knowledge, expert system shells, knowledge acquisition

References:
1. Artificial Intelligence A Modern Approach, Stuart Russell & Peter Norvig, Pearson Education
2. Artificial Intelligence, Ritch & Knight, TMH
3. Artificial Intelligence & Intelligent Systems, N.P.Padhy, Oxford University Press
4. Introduction to Artificial Intelligence & Expert Systems, Dan W. Patterson, PHI
5. PROLOG Programming for Artificial Intelligence, Ivan Bratko, Pearson India

Subject Name: PATTERN RECOGNITION & MACHINE LEARNING

Paper Code: CSEN5236

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Basics of Pattern Recognition: Introduction, Representations of Patterns and Classes, Metric and non-metric proximity measures, Classification, clustering and Different Paradigms of Pattern Recognition.

Classification & clustering algorithms:
Linear and non-linear discrimination function, Bayesian Decision Theory – two category classification, Minimum error rate classification, Minimum distance classifier, K-NN classifier, Basic hierarchical, k-means, and divide & conquer algorithm.
Feature Selection: Basics of feature selection, Principal Component Analysis, Branch and Bound.

Decision Trees.

Introduction to Machine Learning:

Supervised Learning:
VC-dimensions, PAC learning, Regression, Model Selection and Generalization.

Concept Learning and General-To-Specific Ordering:
Concept learning as search, General-to-specific ordering of hypotheses, Finding a maximally specific hypothesis, Version spaces and the candidate elimination algorithm.

Parametric Methods:
Maximum Likelihood Estimation, Evaluating an Estimator: Bias and Variance, Bayes’ Estimator, Parametric Classification, Regression, Model selection procedures.

Multivariate Methods:
Multivariate Data, Parameter Estimation, Estimation of Missing Values, Multivariate Normal Distribution, Multivariate Classification, Multivariate Regression.

Dimensionality Reduction:
Subset Selection, Principal Component Analysis, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis.

Non-parametric Methods:

Advanced Topics:

References:
1. Introduction to Machine Learning by Ethem Alpaydin. Prentice Hall.
I. Introduction (2L):
What is Data Mining? Why do we need data mining? Differences between Data Mining and Machine Learning. Motivating challenges in Data Mining.

II. Classification (22L):

Decision Tree (8L):
General approach to solving a classification problem.
Decision Tree Induction – How a decision tree works, how to build a decision tree, expressing attribute test conditions, measures for selecting best split, algorithm for decision tree induction. Model overfitting – Pre-pruning, post-pruning.

Rule-based Classifier (4L):
How a rule-based classifier works, rule-ordering schemes, how to build a rule-based classifier, direct and indirect methods for rule extraction.

Bayesian Classifier (4L):
Bayes theorem – using it for classification, Naïve Bayes classifier, Bayes error rate.

Support Vector Machines (SVM) (6L):
Maximum margin hyperplanes, Linear SVM: separable case, non-separable case, Non-linear SVM.

III. Association Analysis (10L):

IV. Cluster Analysis (12L):

What is clustering analysis? Motivations, objectives and applications of clustering. Different types of clustering. (1L)

Partitional Clustering (3L): K-means, Bisecting K-means, PAM.

Hierarchical Clustering (4L): Agglomerative, Divisive, MIN, MAX, dendrogram representation.

Density-based Clustering (2L): DBSCAN.
Cluster evaluation, further reading – DENCLUE, CHAMELEON, BIRCH, CURE, ROCK (2L)
Text Books:
1. Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach and Vipin Kuma. Pearson Publishers.

Reference Books:
1. Data Mining: Concepts and Techniques by Jiawei Han and Micheline Kamber. Publisher: Elsevier.
Detailed Syllabus of 3rd Semester

Subject Name: Software Engineering
Paper Code: CSEN6101

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Software Engineering (4L)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Software Engineering:

1. **Introduction to Software Engineering (4L)**
 - Software Life Cycle and brief introduction to different phases of life cycle
 - Introduction to Software Analysis and Design
 - Software Life Cycle models (Methodology or Paradigm): Waterfall Model, Prototyping Model, Spiral Model, Briefly describe iterative and integrative approach and other methodologies used in industry

2. **Requirement Phase (3L)**
 - Describe different steps: Requirement Elicitation, Requirements Analysis, Requirement Specification, General Structure of SRS
 - Requirement Validation and Requirement Management
 - Various Methods of Information Capture
 - Case Study
 - Capturing the Requirement as Use Cases: Use Case Model, Different artifacts of Use Case Diagram, Use Case Specification, Some Example / Case Study

3. **Modeling Technique (3L)**
 - Developing Data Flow Diagram for describing Process Model: The components of a DFD, Different Notations, Guidelines for constructing DFDs, Steps to construct DFD
 - Case Study
 - Creation of Data Model using Entity-Relationship (ER) Diagram

4. **Software Estimation (5L)**
 - Different technique of estimating effort and cost
 - Constructive Cost Model (COCOMO): Basic COCOMO, Intermediate COCOMO (COCOMO 81), Detailed COCOMO (COCOMO II)
 - Calculating effort required at different stages using this model with examples
| 5. Software Design (5L) | **Objectives of Function Point Analysis**
| | **What is a ``Function Point`` and its benefits**
| | **A simple five step counting process**
| | **Case Study to count function points**
| | **Overview:** Introduction to design and translating the analysis model into software design, Similarities and Differences between Requirement Analysis and Design, Attributes of Good Design
| | **Classical Design Methods**
| | **Structured Design Methodology (SDM):** Module design or high level design, Detail design or logical design
| | **Functional Decomposition / Modularity:** Abstraction, Various types of Cohesion, determining module cohesion, Various types of Coupling
| | **Define various design approaches:** Functional, Object Oriented
| | **Functional:** Functional Oriented design using DFD, Design Heuristics, Transaction Analysis, Structure Chart
| | **Detailed Design:** PDL /Structured English
| | **Design Verification and various Metrics**
| 6. Coding or Programming Activity (1L) | **Programming Principles and Guidelines:** Structured Programming, Some Programming Practices, Coding Standards
| | **Coding Process:** An Incremental Coding Process, Test Driven Development, Pair Programming
| | **Source Code Control and Build**
| | **Refactoring – Basic Concept, Refactoring using an example, Bad Smells**
| 7. Software Review and Testing (7L) | **Self Review / Peer Review**
| | **Testing Overview:** Objective, Definition, Static and Dynamic Testing, Functional vs. Non-functional Testing
| | **Define Testing artifacts:** Test Cases and Test Suites, Test Plan, Traceability Matrix, Test Data, Test Harness
| | **Testing Process:** Test Plan, Test Case Design, Test Case Execution
| | **Testing Methods:** White Box Testing (Different approaches of white box testing: Control Flow based criteria, Statement Coverage Criterion, Branch Coverage, Basis Path Testing, Data Flow based testing, Mutation Testing), Black Box Testing (Equivalence Class Partitioning, Boundary Value Analysis, Cause Effect Graphing), Grey Box Testing
<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Software Maintenance (1L)</td>
<td>Defect Logging and Tracking, Test Automation: available tools, techniques, and metrics, Different types of maintenance, Change Management and Maintenance Process</td>
</tr>
<tr>
<td>9. Project Management (5L)</td>
<td>Goal, Project Management Process: Planning, Staffing, Execution, Monitoring and Control, Responsibilities of Project Manager, Scheduling: WBS and Activity Network, Gantt Charts, PERT/CPM, Drawing the CPM Network, Scheduling of Activities Using a Gantt Chart, Calculating the slack and finding the critical path, What is PERT (probabilistic approach) and how does it work?, Trend analysis by Earned Value Analysis: assessing the value of work scheduled, the value of work performed and value that has been earned</td>
</tr>
<tr>
<td>10. Software Configuration Management (1L)</td>
<td>Configuration Identification, Configuration Control, Configuration Status Accounting, Configuration Audits, Concept of Baseline, Versioning of CIs, Some Configuration Management Tools</td>
</tr>
<tr>
<td>11. Risk Management (1L)</td>
<td>Software Risks, Risk Management Activities: Risk Assessment, Risk Control</td>
</tr>
<tr>
<td>12. Object Oriented Analysis and Design (5L)</td>
<td>Some basic concepts: Class & Object, Generalization, Polymorphism, Basic concepts of OOAD, UML and different types of diagrams, Class diagram, different types of relationships between classes with examples, Sequence diagram: Different artifacts of sequence diagram, drawing sequence diagram with examples</td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:
1. IEEE Standards on Software Engineering
List of Electives

Electives III:

1. Cloud Computing
2. OOPS
3. Web technologies
4. Advanced algorithms & DS
5. Randomized algorithms
6. Image Processing
7. MIS
8. Information Retrieval
9. Big Data Analysis

<table>
<thead>
<tr>
<th>Subject Name: Cloud Computing</th>
<th>Paper Code: CSEN6141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Hours per week</td>
<td>L</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

1. **Basics of Cloud Computing [4L]:**
 a. Defining a Cloud, Cloud Types – NIST Cloud Reference Model, Cloud Cube Model, Deployment Models (Public, Private, Hybrid and Community Clouds), Service Models – Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS)
 b. Characteristics of Cloud Computing – a shift in paradigm
 c. Benefits and Advantages of Cloud Computing

2. **Services and Applications by Type [8L]:**
 a. IaaS – Basic Concept, Workload, Partitioning of Virtual Private Server Instances, Pods, Aggregations, Silos
 b. PaaS – Basic Concept, Tools and Development Environment with examples
 c. SaaS - Basic Concept and Characteristics, Open SaaS and SOA, examples of SaaS Platform
 d. Identity as a Service (IDaaS)
 e. Compliance as a Service (CaaS)
3. Concepts of Abstraction and Virtualization [4L]:
 a. Virtualization: Taxonomy of Virtualization Techniques
 b. Hypervisors: Machine Reference Model for Virtualization

4. Use of Google Web Services [4L]:
 a. Discussion of Google Applications Portfolio – Indexed Search, Adwords, Google Analytics, Google Translate, A Brief Discussion on Google Toolkit (including introduction of Google APIs in brief), Major Features of Google App Engine Service

5. Use of Amazon Web Services [4L]:
 a. Amazon Web Service Components and Services: Amazon Elastic Cloud, Amazon Simple Storage System, Amazon Elastic Block Store, Amazon SimpleDB and Relational Database Service

6. Use of Microsoft Cloud Services [4L]:

7. Webmail Services [4L]:
 a. Cloud Mail Services, including Google Gmail, Windows Live Hotmail, Yahoo Mail

8. Cloud-based Storage [4L]:
 a. Cloud File Systems, including GFS and HDFS

9. Cloud Security [4L]:
 a. Cloud security concerns, security boundary, security service boundary
 b. Overview of security mapping
 c. Security of data: cloud storage access, storage location, tenancy, encryption, auditing, compliance
 d. Identity management (awareness of identity protocol standards)

10. Cloud Management [4L]:
 a. An overview of the features of network management systems and a brief introduction of related products from large cloud vendors, monitoring of an entire cloud computing deployment stack – an overview with mention of some products
 b. Lifecycle management of cloud services (six stages of lifecycle)

Text Books:

References:
1. Cloud Computing (2nd Edition) by Dr. Kumar Saurabh, Wiley India
2. Cloud Computing for Dummies by Judith Hurwitz, R. Bloor, M. Kanfman, F. Halper (Wiley India Edition)
4. Cloud Security by Ronald Krutz and Russell Dean Vines, Wiley-India
Subject Name: Object Oriented Programming
Paper Code: CSEN6142

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Object Oriented Paradigm [2L]
Evolution of programming paradigms, Encapsulation & Data Abstraction, Elements of OOP – Classes & Objects, Message, Inheritance, Polymorphism, Popular OOP languages.

Moving from C to C++ [3L]
Stream based I/O, Scope resolution operator, Concept of reference variable, Parameters passing by Reference, Inline functions, Function overloading, Default arguments, Function templates, Runtime memory management.

Classes and Objects [4L]
Class specification, Class objects, Accessing class members, Defining member functions, Pointers within a class, Passing objects as Arguments, Returning objects from functions, Friend functions & Friend class, Static Data members & Static member functions.

Object Initialization and Cleanup [4L]
Constructors, Parameterized constructors, Destructor, Constructor overloading, Constructors with Default Arguments, Dynamic Initialization through Constructors, Copy Constructors, Constructors for 2-D arrays, Constant objects & constructor, Static data members with constructors & destructors.

Dynamic Objects [2L]
Pointers to Objects, Array of Objects, Array of pointers to objects, Pointers to Object Members, this Pointer, near Pointer, far Pointer.

Operator Overloading [4L]
Overloadable operators, Unary operator overloading, Binary operator overloading, Overloading of new & delete operators, Data Conversion, Overloading with Friend functions

Inheritance [5L]
Overview, Derived class declaration, Various forms of Inheritance, Constructors & Destructors in Derived classes, Abstract Classes, Multilevel, Multiple & Hierarchical Inheritance, Virtual Base Class, Benefits of Inheritance

Virtual Functions [2L]
Need for virtual functions, Pointer to Derived class objects, Array of pointers to Base class objects, Pure virtual functions, Virtual destructors, Dynamic binding
Generic Programming with Templates [2L]
Overview, Function Templates, Overloaded Function Templates, Multiple Arguments Function Template, Class Template, Inheritance of Class Template, Class Template with Overloaded Operators

Streams Computation with Files [2L]
Hierarchy of File Stream Classes, File Modes, File pointers & their Manipulators, Sequential Access to a File, File I/O with fstream Class, Random Access to a File, Error Handling During File Manipulators

Exception Handling [2L]
Error Handling, Exception Handling Model, List of Exceptions, Catch All Exceptions, Exceptions in Constructors & Destructors, Exceptions in Operator Overloaded Functions, Exceptions in Class Template.

Namespaces [2L]
Need for Namespaces, Definition of a Namespace, using Declaration, using Directives, Examples

Standard Template Library [2L]
Overview, STL components, STL Iterators, Benefits of STL

Text Books:
2. Mastering C++ by Venugopal, Rajkumar, Ravishankar, TMH

References:

<table>
<thead>
<tr>
<th>Subject Name: Web Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN6143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Commonly used protocols and standards.

Languages and technologies needed to develop software for the Internet and world-wide web (WWW) - HTML/CSS, client-side scripting language (JavaScript), server-side programming (CGI, Servlets/JSP/J2EE, ASP.net, PHP), and XML/web services (Java and .NET),
Advanced technologies for distributed computation, component-based systems, interoperability with legacy systems, database access and content Management Systems (CMS)

Principles and technologies for electronic commerce.

<table>
<thead>
<tr>
<th>Subject Name: Advanced algorithms & DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN6144</td>
</tr>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Analysis. Worst-case and average-case analysis.
Amortized analysis: Aggregate, Accounting and Potential methods.
Efficiency measures for Data Structures: Space, Preprocessing Time and Query Time complexity.

Hashing: Hash functions and collision resolution. Double hashing.

External Memory Data Structures. EM models. B-Trees: operations and properties.

Weight Balanced Trees: Analysis.

Data Structures for Integer Data: Tries, van Emde Boas Trees.

References:

1) Introduction To Algorithms by Cormen, Leiserson, Rivest and Stein.
Prentice Hall.

2) Handbook of Data Structures and Applications.
Sartaj Sahni and Dinesh Mehta eds. CRC Press, 2005.
Introduction. Basic Probability Theory.

Moments and deviations, Markov and Chebyshev inequalities.

Tail Estimates and the Chernoff Bound.

Conditional Expectation and Martingales.

The Probabilistic Method.

Markov Chains and Random Walks.

Searching: Skip Lists.

Randomized Incremental Construction.

Randomized Data Structures for dynamic data.

Randomized Graph Algorithms.

Implementation issues.

Derandomization.

Applications: Algorithms for Data Streams.

Text Book:

References:
1. **Fundamentals of Image Processing**
 Image Acquisition, Image Model, Sampling, Quantization, Relationship between pixels, distance measures, connectivity, Image Geometry, Photographic film.
 Histogram: Definition, decision of contrast basing on histogram, operations basing on histograms like image stretching, image sliding, Image classification.
 Definition and Algorithm of Histogram equalization.

2. **Image Transforms:**
 A detail discussion on Fourier Transform, DFT, FFT, properties
 A brief discussion on WALSH Transform, WFT, HADAMARD Transform, DCT.

3. **Image Enhancement: (by SPATIAL Domain Methods)**
 a. Arithmetic and logical operations, pixel or point operations, size operations,
 b. Smoothing filters-Mean, Median, Mode filters – Comparative study
 c. Edge enhancement filters – Directorial filters, Sobel, Laplacian, Robert, KIRSCH
 Homogeneity & DIFF Filters, prewitt filter, Contrast Based edge enhancement
 techniques.
 Comparative study
 d. Low Pass filters, High Pass filters, sharpening filters. – Comparative Study
 e. Comparative study of all filters
 f. Color image processing.

4. **Image enhancement (By FREQUENCY Domain Methods)**
 Design of Low pass, High pass, EDGE Enhancement, smoothening filters in Frequency Domain. Butter worth filter, Homomorphic filters in Frequency Domain
 Advantages of filters in frequency domain, comparative study of filters in frequency domain
 and spatial domain.

5. **Image compression:**
 Definition, A brief discussion on – Run length encoding, contour coding, Huffman code,
 compression due to change in domain, compression due to quantization, Compression
 at the time of image transmission. Brief discussion on:– Image Compression standards.

6. **Image Segmentation:**
 Definition, characteristics of segmentation. Detection of Discontinuities, Thresholding
 Pixel based segmentation method. Region based segmentation methods – segmentation by pixel aggregation, segmentation by sub region aggregation, histogram
 based segmentation, spilt and merge technique. Use of motion in segmentation (spatial
domain technique only)
7. Morphology:-
Dilation, Erosion, Opening, closing, Hit-and-Miss transform, Boundary extraction, Region filling, connected components, thinning, Thickening, skeletons, Pruning
Extensions to Gray – Scale Images
Application of Morphology in I.P

Text Books:
1. Digital Image Processing, by Rafael C. Gonzalez and Richard E. Woods
Addision Wesley.

References:
2. Image processing, Analysis, and Machine vision by Milan Sonka vaclan Halavac
Roger Boyle, Vikas Publishing House.

<table>
<thead>
<tr>
<th>Subject Name:</th>
<th>Management Information Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code:</td>
<td>CSEN6147</td>
</tr>
<tr>
<td>Contact Hours</td>
<td></td>
</tr>
<tr>
<td>per week</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Resource Requirements for Information Systems: Hardware and capacity planning, software needs, procurement options – make or buy decision, outsourcing as an option in information system.

System Development Life Cycle: Critical Success Factors in customized software, traditional sequential method for system development, CASE tools and modern process of system development. Flexibility Integrity and Control issues in software.

Emerging concepts and issues in information system: Intranet, Extranet and Enterprise Collaboration System, EERPs, Client Server Architecture, and other emerging concepts in information system design and application.
References:
1. Oka: Management Information Systems: a complete text book including solved cases, Everest
2. Sadagopan: Management Information Systems, PHI
3. Murdick, Ross, Clagget: Information System and Modern Management, PHI

Subject Name: Information Retrieval
Paper Code: CSEN6148

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Retrieval utilities. Relevance Feedback, Clustering, Passage-based Retrieval, N-grams, Regression Analysis, Thesauri, Semantic Networks, Parsing.

Computational Efficiency. Inverted index, Query processing, Signature files, Duplicate document detection.

References:

Elective IV:
1. Fault tolerant Computing
2. Business Process Model
3. Compilers
4. Computational Complexity
5. Information & coding Theory
6. Approx. algorithms
7. Spatial Informatics & GIS
8. Graphics & MM
9. Social Networking

<p>| Subject Name: Fault tolerant Computing |
| Paper Code: CSEN6151 |</p>
<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Principles of Fault Tolerance; Reliability Requirements; Hardware F-T Techniques; System Abstractions; Software Structuring Schemes; Techniques for Different Stages of Fault Tolerance; Techniques for Different Types of Faults; Fault Tolerance in Distributed Systems; Fundamental Problems in Coordination; Communication and Remote Operation Over Unreliable Channels; Fault Tolerant Control and Coordination Algorithms Design; F-T System Abstractions/Functions; System Mechanisms for F-T; Fault Tolerant Programming Paradigms; Modeling and Analyzing F-T Distributed Systems.

References:

<table>
<thead>
<tr>
<th>Subject Name Business Process Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN6152</td>
</tr>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The course will provide an introduction to the concepts of business process modeling, the definition of a process, characteristics of a process-oriented application, business process analysis, basic design patterns for process control flow used to assemble tasks, and standard graphical representations used to model a process. A brief overview of business process modeling standards such as Business Process Execution Language (BPEL) and Business Process Modeling Notation (BPMN) will also be included.

- A methodology for analyzing, modeling, and designing business processes, including the use of simulation for measuring and comparing performance of various models.
- Knowledge of the current and emerging information technologies and architectures as enablers of business process improvement, integration and automation.
- Relationships between business processes, strategy and performance
- Process flow measurement, including key process measures, their interrelationships, and managerial levers for controlling them
- Effects of variability on process performance and associated managerial levers to manage for variability
- Techniques for modeling, analyzing, and redesigning a process to achieve specific performance goals, including business process simulation.
- Challenges and opportunities associated with IT-enabled business process automation
- Overview of various management methods in use for achieving process improvement
• Business process automation through modeling with Business Process Management Notation (BPMN 2.0) and service composition and orchestration using BPEL (Business Process Execution Language)

References:

<table>
<thead>
<tr>
<th>Subject Name: Compilers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN6153</td>
</tr>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Introduction: Concept of Language processing system, Phases of compilation and overview.

Lexical Analysis (scanner): Regular language, regular expression, finite automata, Regular expression to NFA,NFA to DFA conversion, from regular expression to deterministic finite automata, scanner generator (lex,flex).

Syntax Analysis (Parser): Context-free language and grammar, push-down automata, LL(1) grammar and top-down parsing, bottom-up parsing, Operator precedence parsing, LR Parsers(LR,Canonical LR,LALR), ambiguity and LR parsing, LALR(1) parser generator (yacc,bison).

Semantic Analysis(Syntax-Directed definitions): inherited and synthesized attributes, dependency graph, evaluation order, bottom up and top down evaluation of attributes, L- and S-attributed definitions.

Type checking : Type systems, Specification of a simple type checker, Equivalence of type expressions, Type conversions.

Run-time environment: Storage organization, activation tree, activation record, parameter passing, symbol table, dynamic storage allocation.

Symbol Table: Its structure, symbol attributes and management.

Intermediate Code Generation: Translation of different language features, different types of intermediate forms.

Code generations
Issues in the design of code generator, a simple code generator, Register allocation & assignment.

Advanced topics
Compilation of object oriented programming languages. (introduction)

References:
1. Fraser and Hanson. A Retargetable C Compiler: Design and Implementation, Addison-Wesley
13. Lex and Yacc, Willey publications

<table>
<thead>
<tr>
<th>Subject Name: Computers Graphics & Multimedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN6158</td>
</tr>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Module I

Introduction to computer graphics & graphics systems and Scan conversion [10L]:
Overview of computer graphics, representing pictures, preparing, presenting & interacting with pictures for presentations;
Points & lines, Line drawing algorithms; DDA algorithm, Bresenham’s line algorithm,
Circle generation algorithm; Ellipse generating algorithm; scan line polygon, fill algorithm, boundary fill algorithm, flood fill algorithm.

Module II

Basic 3D transformation & viewing [6L]:
Basic 2D transformations, 3D transformations: translation, rotation, scaling & other transformations. Rotation about an arbitrary axis in space, reflection through an arbitrary plane;
general parallel projection transformation; clipping, view port clipping, 3D viewing.
Module III
Curves [3L]:
Curve representation, surfaces, designs, Bezier curves, B-spline curves, end
conditions for periodic B-spline curves, rational B-spline curves.

Hidden surfaces [3L]: Depth comparison, Z-buffer algorithm, Back face detection, BSP
tree
method, the Painter’s algorithm, scan-line algorithm; Hidden line elimination, wire frame
methods , fractal - geometry.

Module IV
Introduction to Multimedia[4L]: Review-
hypermedia; authoring and tools; data type
and file formats; audio and video signals; digitization –audio and video; Basic Sound
Concepts, Types of Sound, Digitizing Sound, Computer Representation of Sound
(Sampling Rate, Sampling Size, Quantization), Audio Formats, Audio tools, MIDI

Compression[6L]: MPEG, JPEG; transformations; lossy and lose less algorithms,
audio and video compression standards.
Multimedia data base [6L]: data structures – quad trees , R-trees ; image databox,
image processing and retrieval; text and document database ; video database ; audio
database; design and architecture of a MM database.
MM Servers[4L]: architecture; scheduling, storage and cache management. Mobile
multimedia. Watermarking and stenography. MM over Internet and wireless network.

Text Books:

References:
1. Shanar: Multimedia: a practical approach, Jaico,
2. Buford: Multimedia Systems, Pearson

<p>| Subject Name: Approximation Algorithms |
| Paper Code: CSEN6155 |</p>
<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

NP-Completeness: Polynomial time, NP-Hardness, NP-Completeness and reducibility,
NP-Completeness proofs.
approximation scheme (PTAS), Fully polynomial time approximation scheme (FPTAS).

Approximate covering and packing, set cover, vertex cover, independent set.

Approximation algorithms for highly connected subgraphs. Weighted and unweighted vertex connectivity. Weighted and unweighted edge connectivity. Strong connectivity.

Approximation Algorithms for Geometric problems. Euclidean TSP, Steiner tree problems, Steiner ratio, Minimum weight triangulation with steiner points, Clustering, K-minimum spanning tree, polygon separation, point set separation.

Hardness of approximations. Inapproximability results. PCP theorem. PCP and inapproximability of MAX-3SAT.

Text Books:
1. Approximation Algorithms by Vijay Vazirani, (Springer, 2001)

<table>
<thead>
<tr>
<th>Subject Name: Computational Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Code: CSEN6154</td>
</tr>
<tr>
<td>Contact Hours per week</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Module I: Basic Complexity Classes
The computational model. NP and NP completeness. Diagonalization. Space complexity.

Module II: Lower bounds for concrete computational models. Decision trees

Module III: Advanced topics
Proofs of PCP theorems and the Fourier transform technique.

Information, entropy and self-organization, complexity theory, data reduction, cryptology.

References:

Subject Name: Spatial Informatics & GIS

Paper Code: CSEN6158

<table>
<thead>
<tr>
<th>Contact Hours per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Introduction and overview of GIS. GIS: Definition, features, functions; why GIS is important; how GIS is applied, GIS as an Information System; GIS and cartography; contributing and allied disciplines; historical development of GIS.

GIS and Maps, Map Projections and Coordinate Systems. Maps and their characteristics, selection, abstraction, scale. Automated cartography vs. GIS, Map projections, Coordinate Systems, Precision and Error. Making Maps. Parts of a Map; Map functions in GIS; Map design and map elements

Data Sources, Data Input, Data Quality, Database Concepts. Major Data Feeds and their characteristics: maps, GPS, images, databases, commercial data; locating and evaluating data; data formats; data quality; metadata. Database concepts and components; flat files, relation database concepts; data modeling; views of the database; normalization; databases and GIS. Spatial Analysis. Questions a GIS can answer; GIS analytical functions, vector analysis including topological overlay; raster analysis; statistics; integrated spatial analysis.

Spatial Informatics: Mathematical concepts (e.g. Euclidean space, topology of space, network space), Geo-information models (e.g. field-based, object-based), Representations (e.g. discretized, spaghetti, tessellation, voronoi diagram), Algorithms (e.g. metric and Euclidean, topological, set-based, riangulation, graph-based), Data Structures and access methods (e.g. space filling curves, quad-trees, R-tree), Analysis (e.g. spatial query languages, spatial statistics, spatial data mining). Location based services: Overview, Positioning Technologies, Mapping, Applications. Spatial Networks: Representation, Access Methods.

References: